У каких автомобилей дисковые тормоза

Содержание

У каких автомобилей дисковые тормоза

Виды, устройство и принцип работы дисковых тормозов

Дисковые гидравлические тормоза являются одной из разновидностей тормозных механизмов фрикционного типа. Их вращающаяся часть представлена тормозным диском, а неподвижная – суппортом с тормозными колодками. Несмотря на достаточно распространенное применение тормозов барабанного типа, дисковые тормоза все же приобрели наибольшую популярность. Разберемся в устройстве дискового тормоза, а также узнаем отличия между двумя тормозными механизмами.

Устройство дисковых тормозов

Конструкция дискового тормоза следующая:

  • суппорт (скоба);
  • рабочий тормозной цилиндр;
  • тормозные колодки;
  • тормозной диск.

Конструкция дискового тормоза

Суппорт, представляющий собой чугунный или алюминиевый корпус (в виде скобы), закреплен на поворотном кулаке. Конструкция суппорта позволяет ему перемещаться по направляющим в горизонтальной плоскости относительно тормозного диска (в случае механизма с плавающей скобой). В корпусе суппорта размещены поршни, которые при торможении прижимают тормозные колодки к диску.

Рабочий тормозной цилиндр выполнен непосредственно в корпусе суппорта, внутри него находится поршень с уплотнительной манжетой. Для удаления скопившегося воздуха при прокачке тормозов на корпусе установлен штуцер.

Тормозные колодки, представляющие собой металлические пластины с закрепленными фрикционными накладками, устанавливаются в корпус суппорта по обеим сторонам тормозного диска.

Вращающийся тормозной диск устанавливается на ступицу колеса. Крепление тормозного диска к ступице осуществляется при помощи болтов.

Виды дисковых тормозных механизмов

Дисковые тормоза делятся на две большие группы по типу применяемого суппорта (скобы):

  • механизмы с фиксированной скобой;
  • механизмы с плавающей скобой.

Механизм с фиксированной скобой

В первом варианте скоба имеет возможность перемещаться по направляющим и имеет один поршень. Во втором случае скоба фиксирована и содержит два поршня, установленные по разные стороны от тормозного диска. Тормозные механизмы с фиксированной скобой способны создавать большее усилие прижатия колодки к диску и, соответственно, большую тормозную силу. Однако и стоимость их выше, чем у тормозов с плавающей скобой. Поэтому данные тормозные механизмы применяются, в основном, на мощных автомобилях, (с использованием нескольких пар поршней).

Принцип работы дисковых тормозов

Дисковый тормозной механизм, как и любой другой тормоз, предназначен для изменения скорости движения автомобиля.

Пошаговая схема работы дисковых тормозов:

  1. При нажатии водителем на педаль тормоза, ГТЦ создает давление в тормозных трубках.
  2. Для механизма с фиксированной скобой: давление жидкости воздействует на поршни рабочих тормозных цилиндров с обоих сторон тормозного диска, которые, в свою очередь, прижимают к нему колодки. Для механизма с плавающей скобой: давление жидкости воздействует на поршень и корпус суппорта одновременно, заставляя последний перемещаться и прижимать колодку к диску с другой стороны.
  3. Диск, зажатый между двумя колодками, уменьшает скорость за счет силы трения. А это, в свою очередь, приводит к торможению автомобиля.
  4. После того, как водитель отпустит педаль тормоза, давление пропадает. Поршень возвращается в исходное положение за счет упругих свойств уплотнительной манжеты, а колодки отводятся с помощью небольшой вибрации диска в процессе движения.

Виды тормозных дисков

По материалу изготовления тормозные диски подразделяются на:

  1. Чугунные;
  2. Диски из нержавейки;
  3. Карбоновые;
  4. Керамические.

Керамический диск

Чаще всего тормозные диски изготовлены из чугуна, который имеет хорошие фрикционные свойства и невысокую стоимость производства. Износ тормозных дисков из чугуна не велик. С другой стороны, при регулярном интенсивном торможении, вызывающем повышение температуры, возможно коробление чугунного диска, а при попадании на него воды – покрытие трещинами. Помимо этого, чугун достаточно тяжелый материал, а после длительной стоянки может покрываться ржавчиной.

Известны диски и из нержавейки, которая не так чувствительна к перепадам температур, но обладает более слабыми фрикционными свойствами, чем чугун.

Перфорированный вентилируемый диск

Карбоновые диски отличаются меньшим весом, по сравнению с чугунными. Также они имеют более высокий коэффициент трения и рабочий диапазон. Однако по своей стоимости такие диски могут конкурировать со стоимостью автомобиля малого класса. Да и для нормальной работы необходим их предварительный прогрев.

Керамические тормоза не могут сравниться с карбоном по показателю коэффициента трения, но имеют ряд своих преимуществ:

  • устойчивость к высокой температуре;
  • стойкость к износу и коррозии;
  • высокая прочность;
  • небольшая удельная масса;
  • долговечность.

Есть у керамики и свои минусы:

  • плохая работа керамики при низких температурах;
  • скрип при работе;
  • высокая стоимость.

Тормозные диски можно подразделить и на:

Первые состоят из двух пластин с полостями между ними. Это сделано для лучшего отвода тепла от дисков, средняя рабочая температура которых составляет 200-300 градусов. Вторые имеют перфорацию/насечки по поверхности диска. Перфорация или насечки предназначены для отвода продуктов износа тормозных колодок и обеспечения постоянного коэффициента трения.

Виды тормозных колодок

Тормозные колодки, в зависимости от материала фрикционных накладок, подразделяются на следующие виды:

Первые очень вредны для организма, поэтому чтобы поменять такие колодки, нужно соблюдать все меры безопасности.

В безасбестовых колодках роль армирующего компонента могут выполнять стальная вата, медная стружка и другие элементы. Стоимость и качество колодок будут зависеть от их составляющих элементов.

Наилучшими тормозными свойствами обладают колодки, сделанные на основе органических волокон, но и стоимость их будет высока.

Обслуживание тормозных дисков и колодок

Износ и замена дисков

Износ тормозных дисков напрямую связан со стилем вождения автомобилиста. Степень износа определяется не только километражем, но и ездой по плохим дорогам. Также на степень износа тормозных дисков влияет их качество.

Минимально допустимая толщина тормозного диска зависит от марки и модели транспортного средства.

Среднее значение минимально допустимой толщины диска передних тормозов – 22-25 мм, задних – 7-10 мм. Это зависит от веса и мощности автомобиля.

Основными факторами, указывающими на то, что передние или задние тормозные диски необходимо менять, являются:

  • биение дисков при торможении;
  • механические повреждения;
  • увеличение тормозного пути;
  • снижение уровня рабочей жидкости.

Износ и замена колодок

Износ тормозных колодок, прежде всего, зависит от качества фрикционного материала. Немаловажную роль играет и стиль вождения. Чем интенсивнее будет торможение, тем сильнее износ.

Передние колодки изнашиваются быстрее задних за счет того, что при торможении они испытывают основную нагрузку. При замене колодок лучше менять их одновременно на обоих колесах, будь-то задние или передние.

Неравномерно могут изнашиваться и колодки, установленные на одну ось. Это зависит от исправности рабочих цилиндров. Если последние неисправны, то они сдавливают колодки неравномерно. Разница в толщине накладок в 1,5-2 мм может говорить о неравномерном износе колодок.

Существует несколько способов, позволяющих понять, нужно ли менять тормозные колодки:

  1. Визуальный, основанный на проверке толщины фрикционной накладки. На износ указывает толщина накладки в 2-3 мм.
  2. Механический, при котором колодки оснащаются специальными металлическими пластинками. Последние по мере истирания накладок начинают соприкасаться с тормозными дисками, из-за чего скрипят дисковые тормоза. Причиной скрипа тормозов является истирание накладки до 2-2,5 мм.
  3. Электронный, при котором используются колодки с датчиком износа. Как только фрикционная накладка сотрется до датчика, его сердечник соприкоснется с тормозным диском, электрическая цепь замкнется и загорится индикатор на приборной панели.
Читать статью  Дисковые тормоза: типичные поломки и ремонт

Плюсы и минусы дисковых тормозов в сравнении с барабанными

Дисковые тормоза имеют ряд преимуществ перед барабанными. Их плюсы заключаются в следующем:

  • стабильная работа при попадании воды и загрязнении;
  • стабильная работа при повышении температуры;
  • эффективное охлаждение;
  • малые размеры и вес;
  • простота обслуживания.

К основным недостаткам дисковых тормозов в сравнении с барабанными можно отнести:

  • высокая стоимость;
  • меньшая эффективность торможения.

Как работает тормозной диск и чем он лучше барабана: разбираемся вместе с Ferodo

Злые языки людей недалеких или просто медлительных быстро окрестили «тормозами». И, надо сказать, очень зря. Не только с точки зрения этики, но с точки зрения техники: тормоз – штука сложная, умная и очень быстрая. Конечно, в начале своего развития тормоза действительно были примитивными, малоэффективными и не очень надежными, но за сотню лет своей истории они сильно изменились.

Немного истории ​

Необходимость в тормозах появилась практически сразу после изобретения колеса, однако предки пару тысяч лет назад не стали торопить события и долго ездили на колесницах без тормозов в нашем привычном понимании. Однако к появлению карет тормоза уже поспели: это были механизмы, воздействующие непосредственно на колесо. Колодка, прижимаемая рычагом к внешней поверхности колеса, не могла эффективно остановить конный экипаж, но помочь лошадям была вполне способна. Но тут изобрели резиновые шины, и механизм с прижимом колодки к колесу ушел на пенсию. По крайней мере, в дорожном транспорте: сегодня механизмы с внешним прижимом успешно работают на железной дороге, хотя и там альтернатив им хватает. На обычных же дорогах кареты обзавелись ленточными тормозами: барабан на оси останавливался тормозной лентой, натягиваемой рычагом. Однако эффективность такой схемы тоже быстро была признана недостаточной, так что инженеры продолжили работать над изобретением новых механизмов.

Результатом этой работы стали два фундаментальных механизма, которые работают в автомобилях по сей день: барабанный и дисковый тормоз. Появились они практически одновременно, в самом начале 20 века, однако на первых порах барабанные механизмы захватили лидерство. Дело было не только в авторитете Вильгельма Майбаха, который установил на изобретенный им автомобиль барабанные тормоза, и Луи Рено, который запатентовал конструкцию с полукруглыми колодками. Барабанные тормоза были проще, а разработка фрикционных материалов способствовала их популяризации. Ключевым этапом в развитии фрикционных материалов стало создание тормозных накладок на основе асбеста и фенолформальдегидных смол, и сделала это в 1902 году компания Ferodo. В общем, начало века стало по-настоящему отправной точкой в развитии тормозных систем.

Однако дисковым механизмам потребовалось время, чтобы догнать барабаны и стать популярными. На ранних этапах у них было больше проблем, чем преимуществ: не было подходящего материала для изготовления дисков, в отсутствие усилителей система с механическим приводом требовала большего усилия по сравнению с барабанной, и даже гидравлический привод не решил вопрос из-за отсутствия нормальной тормозной жидкости. В общем, вопросов было больше, чем ответов, поэтому поначалу применение дисковых тормозов было эпизодическим. Одним из пионеров их применения был Уильям Ланчестер, но и он на тот момент не смог сделать дисковые механизмы конкурентным преимуществом своих машин. К примеру, на автомобилях Lanchester в начале 20 века диски из-за ограниченного выбора материалов были бронзовыми, что не способствовало их износостойкости. Однако полученный им патент все же стимулировал не только его самого к продолжению работы над совершенствованием дисковых тормозов.

Реальное развитие дисковая схема получила спустя еще 25-30 лет. К тому моменту был отработан гидравлический привод, а для снижения усилия на педали до приемлемого был внедрен вакуумный усилитель. Правда, в 30-е годы вакуумный усилитель в основном внедрялся на американские машины с барабанными тормозами, поскольку те все еще были дешевле и проще в производстве. Однако грядущий переход от барабанов к дискам уже был осязаем и неизбежен. Правда, в потребительском сегменте его сильно задержала Вторая мировая война. В военное время дисковым тормозам, разумеется, тоже уделяли внимание, однако они применялись и совершенствовались на танках и самолетах, а не на легковых машинах. Ну а после войны, на рубеже 40-х и 50-х, такие механизмы начали впервые появляться и на серийных автомобилях.

Разумеется, развитие дисковых тормозов сопровождалось совершенствованием конструкции и материалов. Помимо вакуумных усилителей и более эффективной тормозной жидкости, которая не закипала при торможении, важным этапом был переход к чугуну в качестве материала изготовления тормозных дисков. Причем серый чугун стал настолько эффективным решением, что применяется и поныне в подавляющем большинстве автомобилей. Чугун, правда, не решил полностью старые проблемы. Если охлаждение удалось улучшить за счет отливки вентилируемых тормозных дисков, то коррозия, пусть и внешняя, осталась верным спутником дисковых тормозов. О коррозии мы, впрочем, еще поговорим – а пока перейдем от древней истории к современной и вспомним, как эффективность дисковых тормозов выросла в последние десятилетия.

От чего зависит эффективность дисковых тормозов?

После получения практически идеального рецепта из нормальных чугунных дисков, качественных колодок и стойкой к перегревам тормозной жидкости на основе полиэтиленгликоля и его эфиров, развитие дисковых тормозных систем пошло в основном по экстенсивному пути. Переход к вентилируемым дискам состоялся быстро, ведь охлаждение было одной из ключевых задач повышения эффективности тормозов. А вот дальше начался поиск идеального баланса между диаметром тормозного диска, его конструкцией, материалом его изготовления и устройством тормозного механизма. Ведь с учетом того, что чугунный диск весьма прочен, отлично держит нагрузки и хорошо рассеивает тепло, на него можно и нужно хорошо давить. И здесь на сцену вышли многопоршневые конструкции. Тут все тоже несложно: если базовый тормозной механизм с плавающей скобой предусматривает наличие всего одного поршня, который давит на диск и прижимает к нему колодки с обеих сторон, то увеличение числа поршней и, соответственно, площади колодок позволяет повысить эффективность торможения без значительного увеличения диаметра самого диска. А это условие куда важнее, чем может показаться: ведь чугунный диск немало весит, так что повышение эффективности тормозов исключительно за счет увеличения площади диска – путь практически тупиковый из-за неоправданного роста неподрессоренных масс.

В борьбе за неподрессоренные массы родились не только многопоршневые механизмы, но и составные диски. Ведь тормозной диск фактически состоит из двух частей: ротора, на который давят колодки, и центральной части, которая крепится к ступице. При этом работа по созданию тормозного усилия ложится главным образом на ротор, да и охлаждать нужно именно его. А вот на материале центральной части можно и нужно сэкономить килограмм-другой. В этом, собственно, и состоит суть составных дисков, в которых центральная часть выполнена из более легкого материала вроде алюминиевого сплава, а ротор, прикрепленный к ней винтами или заклепками, – из традиционного чугуна.

Следующим шагом здесь стала замена чугуна на более легкие материалы, такие как углеродное волокно и керамика. Казалось бы, вот он – новый прорыв, ведь карбон-керамические тормоза можно делать сколь угодно большими из-за их небольшой массы, а их износостойкость и термостойкость лишь укрепляют веру в прогресс. Однако на практике оказалось, что диски из углеродного композита хороши лишь при экстремальных нагрузках, когда рабочие температуры переваливают за тысячу градусов. В гражданских же условиях «холодные» тормоза работают гораздо менее эффективно, и в основном именно эта зависимость эффективности от температуры ограничивает их применение на массовых машинах.

Таким образом, главным материалом тормозных дисков потребительского уровня остается высокопрочный чугун с шаровидным графитом, а основной фокус делается на качестве изготовления и эффективности охлаждения. Важными в этих условиях становятся технологии производства: качество сырья и литья, чистовая обработка поверхностей, а также отработанная процедура стендового и практического тестирования для контроля качества. Все это доступно крупным производителям тормозных компонентов с большим опытом и историей производства – таким, как Ferodo. Именно Ferodo, как мы помним, более века назад дала толчок к развитию тормозных систем своими разработками в области фрикционных материалов. А сегодня продукция Ferodo является частью обширного ассортимента, предлагаемого подразделением DRiV корпорации Tenneco. Компания выпускает полный ассортимент тормозных компонентов, включая диски, колодки, суппорты, гидроцилиндры и шланги тормозной системы, тормозные жидкости и многое другое.

Читать статью  АКПП: машина не едет вперед без газа

А теперь на секундочку вернемся к коррозии, о которой мы говорили выше. Для чугунных дисков окисление – проблема все же не эксплуатационная, а эстетическая: чтобы чугунный диск съела ржавчина, потребуется не один десяток лет, а вот поверхностная коррозия появляется на нем уже спустя несколько месяцев, особенно в условиях агрессивной среды вроде дорожной химии. И у Ferodo есть решение этого эстетического вопроса: диски с технологией Coat+, имеющие цинк-алюминиевое гальваническое покрытие для защиты диска от коррозии. Эта технология надежно защищает от коррозии не только ступичную часть диска, но и внутренние каналы охлаждения, обеспечивая требуемую эффективность отвода тепла при торможении. То есть жизнь владельцев красивых машин, которые уделяют внимание мелочам и не любят видимые внешние дефекты, становится немного проще: диски с технологией Coat+ сохраняют свой изначальный внешний вид долгие годы – при условии правильной эксплуатации и, конечно же, ухода.

Заключение

Завершая разговор о тормозах, обычно говорят об их важности, о том, что экономить на них, как и на шинах, нельзя, а также о том, что тормоза – это главное условие безопасности. Хорошие колодки – не просто те, что не скрипят. Хорошие диски – не просто те, что вышли с завода ровными и круглыми, а те, что выполнены из качественного материала, имеют эффективное охлаждение и, соответственно, не деформируются при активной эксплуатации. Конечно, даже покоробленные диски в ряде случаев можно проточить, но чудес обычно не бывает: если они испортились раз, то испортятся и второй. Мы с этими прописными истинами, разумеется, согласны, а потому рассказываем не только о теории, но и о выборе качественной продукции – такой, как Ferodo. Уж если этому бренду более 120 лет и специалисты Ferodo разрабатывали и производили детали тормозной системы и для повозок в далеком 1897 году, и делают это сейчас для современных автомобилей, то в тормозах они разбираются однозначно.

Диаметр, вентиляция и композиты: эволюция дисковых тормозов

Вы наверняка не раз читали про суперкрутые гоночные корчи с композитными вентилируемыми шестипоршневыми 18-дюймовыми дисковыми тормозами по кругу. В целом понятно, что перечисление этих регалий говорит о способности очень быстро и эффективно тормозить. Ну а в деталях?

Дисковые тормоза давно вытеснили все остальные варианты тормозных механизмов, и только редкие барабанные еще пытаются что-то им противопоставить на бюджетных легковушках и тяжелой технике. Но со временем сами дисковые тормоза стали разнообразнее: менялись материалы и устройство дисков и суппортов, равно как и размеры. Что же, попробуем разобраться в их эволюции. И в ее смысле.

Коротко о плюсах дисков

Своим успехом дисковые тормозные механизмы обязаны двум факторам. Во-первых, простоте создания большого усилия – сжимать чугунный диск можно очень сильно, и он не согнется, не сломается и не потеряет своих характеристик. А раз усилие сжатия велико, то и тормозная мощность будет ограничена только прочностью суппорта и тепловой нагрузкой на сам диск.

Во-вторых, собственно, хорошей способностью к восприятию этой самой тепловой нагрузки, или, другими словами, хорошими способностями к охлаждению. Пока диск вращается, он создает непрерывный поток воздуха на своей поверхности, эффективно удаляющий тепло и продукты износа.

Depositphotos_39755463_original.jpg

Помимо двух этих основных факторов, нашлось и множество второстепенных вроде простоты создания авторегулировки тормозов, точности и «прозрачности» усилий, малой массы тормозного механизма, удобства компоновки со ступицей, простоты обслуживания и прочих. Хотя без первых двух они были бы не столь важны.

А первые два фактора можно охарактеризовать в сумме одним словом – это «мощность». Именно мощность тормозных механизмов при малой массе стала тем, что сделало их успешными. Это способствовало созданию все более и более мощных тормозов, способных без ухудшения характеристик переносить многочисленные торможения с большой скорости.

Зачем нужно усложнять диск?

На первом этапе усовершенствования дисковых тормозов постарались улучшить в первую очередь именно способность к охлаждению, чтобы дополнительно снизить риск перегрева при затяжных или частых торможениях. В дальнейшем именно желание увеличить тепловую мощность тормозов будет толкать конструкторов все к новым и новым решениям.

Диск нельзя нагревать бесконечно – материалы банально теряют прочность, колодки «горят», уплотнения суппорта разрушаются, в общем, греть диски ради большей теплоотдачи нельзя, нужно «держать» температуру и охлаждать.

Вентиляция

Обеспечить лучшее охлаждение диску можно двумя путями: либо увеличивая его площадь (об этом чуть позже), либо введя вентиляцию. За счет создания внутренних радиальных каналов внутри диска площадь охлаждения увеличилась в пять-шесть раз, и во столько же раз увеличилась мощность.

Depositphotos_74700949_original.jpg

Еще немного увеличить площадь охлаждения позволяет перфорация, и она же чуть улучшает очистку диска при прижатии колодок. К сожалению, усложнение конструкции диска дальше маловероятно и ограничено теплопроводностью чугуна. По сути, почти все современные тормозные механизмы выполнены именно по этой схеме: передние – практически всегда вентилируемые, но без перфорации – она ослабляет диск, снижает его ресурс и применяется нечасто.

Увеличение диаметра

Теперь вернемся к размерам. Увеличивая диаметр диска, мы решаем две проблемы. Во-первых, при этом возрастает площадь охлаждения, а во-вторых – тормозной момент и одновременно скорость вращения диска в зоне трения колодок. Тормозная мощность «размазывается» по площади, уменьшается нагрев. Появляется возможность уменьшить давление прижатия колодок, а значит, снижаются требования к фрикционным материалам и повышается удобство пользования тормозами.

Путь увеличения площади хороший, если бы не одна проблема: внешний диаметр диска всегда ограничен размером колеса. Примерно до 19 дюймов увеличение диаметра колесного диска еще может быть оправдано улучшением управляемости, но дальше гигантомания идет во вред. Прежде всего – из-за того, что критически вырастает неподрессоренная масса, страдает комфорт и, как ни странно, управляемость автомобиля. Да и слишком большой диск быстрее коробится. Эту проблему можно было бы решить утолщением диска, но тогда вырастет масса, а она, как мы поняли, и так уже велика. Но конструкторская мысль нашла выход из положения.

Составные диски

По сути, рабочей зоной тормозных колодок является только внешний край тормозного диска. Использовать всю его площадь просто не нужно – тормозное усилие зависит не от площади контакта колодок. При увеличении площади улучшается модуляция и уменьшается износ накладок, но площадь можно сохранить, увеличив только «длину» колодки, а не ее «высоту». Это значит, что вместо большого и тяжелого сплошного диска можно использовать лишь сравнительно тонкое кольцо максимального диаметра.

Конструктивно проблему можно было решить двумя способами. Традиционный заключается в том, что можно выполнить центральную часть тормозного диска из легкого сплава и прикрепить к ней чугунное кольцо, по которому будут работать колодки.

Второй вариант – прикрепить чугунное кольцо к легкосплавному колесному центру изнутри. Соответственно, и тормозной суппорт тогда будет охватывать тормозное кольцо изнутри, а не снаружи. Второе решение не очень-то прижилось, разве что владельцы ЗАЗ Таврия помнят сей конструктив, да знатоки железнодорожной техники вспомнят локомотивы с подобными тормозными механизмами.

Depositphotos_83934210_original.jpg

А вот более классическая конструкция диска с легкосплавным центром завоевала мир гоночных и спортивных автомобилей. Составные тормозные диски позволяют экономить по несколько килограмм массы на каждом колесе и к тому же дешевле в эксплуатации – внутренняя сложная легкосплавная часть зачастую не требует замены, меняется лишь простое по конфигурации наружное кольцо из чугуна или другого материала с похожими свойствами.

Читать статью  Система ABS: что это такое и как работает?

Плавающие диски

Следующим логичным шагом по пути улучшения стало создание «плавающих» тормозных дисков. Не бойтесь, ни о каком водяном охлаждении речи не пойдет, впрыск воды остается для дисковых тормозов крайне экзотической технологией. Суть куда проще: крепление центральной части такого составного тормозного диска позволяет внешней чугунной части при расширении немного сдвигаться. Тем самым уменьшаются нагрузки, которые возникают из-за разницы в коэффициенте расширения у разных металлов и разнице температур между центральной частью и тормозным кольцом.

А раз нет риска коробления, то можно допустить прогрев диска до большей температуры без риска критического перегрева. Кроме того, улучшаются условия прилегания колодок, и тормоза заработают в полную силу при большей нагрузке. Такой диск может иметь мощность на все 20–30% выше, чем у «жесткой» конструкции, при незначительном, в общем-то, усложнении.

Композитные материалы

При создании составных дисков открылось еще одно направление в развитии тормозных механизмов. Увеличить теплоотдачу можно еще и повышением температуры тормозов, но тогда придется заменить на что-то, умеющее работать при температурах под тысячу градусов. Кандидаты нашлись быстро: в первую очередь это биметаллические диски, металлокерамика и углеволокно.

Биметаллические диски позволяли получить выигрыш в массе, но по совокупности характеристик не получили выигрыша в сравнении с поверхностно упрочненным чугуном, так что эта тюнинговая экзотика почти не встречается. А вот материалы на основе углерод-углеродной, керамической и метал-керамической матрицы прижились, несмотря на очень высокую цену относительно чугуна.

Причин сразу несколько. Во-первых, по сравнению с чугуном композитные материалы имеют в несколько раз меньшую плотность, а значит, на 50-75 % снижается масса диска. Рабочая температура выше 1 100 градусов для них не является проблемой, причем температура поверхности может доходить до 1 400 градусов, поэтому теплоотдача вырастает примерно в полтора-два раза в сравнении с чугуном.

Во-вторых, волокнистые композиты на основе SiC-матрицы обладают очень высокой износостойкостью – такие диски практически «вечные», даже если учитывать особенности эксплуатации в гоночных автомобилях. Чаще всего они выходят из строя не из-за износа поверхности, а из-за разрушения точек крепления и расслоений, свойственных композитам.

В-третьих, у композитных дисков полностью отсутствуют «прихватывания» – точки локального изменения поверхности диска под воздействием высокой температуры и материала колодок.

Именно такие диски можно сделать наибольшего размера, к тому же вдвое увеличив мощность тормозных механизмов. Так почему же композитные материалы до сих пор не вытеснили чугун? Минусы проявились тоже достаточно быстро. Высокая стоимость является очевидным недостатком, но по сути сильно зависит от технологии производства, при появлении массового спроса в автомобилестроении шансы на ее снижение довольно велики. Сами материалы, на самом деле, не столь дороги.

Какие тормоза лучше: дисковые или барабанные?

Основная роль при торможении автомобиля лежит на тормозных механизмах. Они за счет сил трения замедляют вращения колес.

Рабочая тормозная система легкового автомобиля состоит из двух основных составляющих – привода, который обеспечивает передачу и увеличение усилия, и исполнительных механизмов, установленных на каждом колесе. В их задачу входит преобразование усилия в силу трения.

диск и барабан

Типы тормозных механизмов и особенности конструкции

На легковых авто распространён только один тип привода – гидравлический, рабочих механизмов – два типа:

От первого типа постепенно отказываются в пользу второго ввиду определенных особенностей. На автомобилях может быть разная компоновка исполнительных механизмов: только дисковые (встречается все чаще), все барабанные (остались только на грузовых авто), комбинированная (на передней оси – дисковые, сзади – барабанные).

Барабанный тип

Состоит вся конструкция из подвижных и неподвижных элементов. Основным из подвижных является барабан, выполненный в виде чаши. Он установлен на оси (через подшипники), что обеспечивает легкость вращения. К нему крепится колесо, при движении оба они крутятся с одной скоростью.

Неподвижной частью выступает щит, зафиксированный на ступице. К этому щиту прикручены гидравлический цилиндр с поршнями и опора колодок.

Конструкция барабанных тормозов

Тормозные колодки изготовлены в виде полумесяцев. Для увеличения сил трения на внешней стороне их закреплены фрикционные накладки.

Вершинами колодки упираются в поршни цилиндра и опоры. В таком положении они фиксируются стяжными пружинками и прижимами. Поверх этих колодок располагается барабан.

Функционирует такой механизм просто: при нажатии на тормозную педаль рабочая жидкость под давлением поступает в цилиндр механизма. Создаваемое давление выталкивает поршни из цилиндра. Поскольку на них опираются вершины колодок, то перемещение поршней сопровождается их расхождением. Из-за этого колодки накладками прижимаются к внутренней рабочей поверхности чаши, и между ними возникает трение, которое замедляет скорость вращения барабана вместе с колесом. После отпускания педали давление в цилиндре падает и пружины стягивают колодки в исходную позицию. Происходит растормаживание колеса.

Видео: Барабанные или дисковые тормоза. Что лучше? Просто о сложном

Дисковые тормоза

В дисковых механизмах применяется иная конструкция. У нее основным рабочим элементом выступает диск, установленный на ступице. Тормозные колодки (в виде пластин) с фрикционными накладками располагаются по бокам диска.

Поверх этого установлен суппорт с рабочим цилиндром. На некоторых авто использовался суппорт с двумя поршнями, каждый из которых воздействовал на колодку.

Конструкция дисковых тормозов

Но чаще применяется однопоршневая конструкция суппорта, но при этом для обеспечения прижима обеих колодок его сделали подвижным.

Работает этот механизм так: при возникновении давления поршень выходит и прижимает к боковой рабочей поверхности диска одну колодку. При этом возникает противодействующее усилие, из-за которого суппорт смещается на направляющих и начинает корпусом прижимать вторую колодку. За счет этого перемещения достигается равномерное распределение усилия прижима.

Как видно, оба механизма используют разные способы получения трения, в первом случае для срабатывания механизма нужно колодки развести, а во втором – прижать.

Так какие лучше и какие у них недостатки?

По сравнению с дисковым вариантом, у барабанного преимуществ не так уж и много:

  1. Закрытая конструкция исключает попадание грязи между элементами трения, из-за чего служат они дольше.
  2. Барабан — массивный элемент, поэтому он «не боится» резких перепадов температуры.
  3. В барабанных механизмах легче организовать механическую блокировку колес (стояночный тормоз). Для этого достаточно установить дополнительный рычаг, перемещение которого обеспечит разведение колодок и удержание их.
  4. Большая площадь контакта накладок с диском (за счет увеличенных габаритных размеров) обеспечивает высокое тормозное усилие.

направление теплового расширения

Что касается недостатков, то их у барабанных тормозов тоже немало, причем многие из них переплетаются с достоинствами:

  • из-за закрытой конструкции продукты износа рабочих поверхностей не отводятся и попадают между трущимися поверхностями, снижая силу трения;
  • трение сопровождается сильным нагревом, который в барабанном механизме в недостаточной мере отводится. Из-за этого барабан расширяется (поскольку он металлический), и для создания должного прижима водитель дожимает тормозную педаль, иначе эффективность торможения снизится;
  • неравномерный износ колодок. Поршни не способны равномерно прижать их, поэтому контактируют они с барабаном не всей площадью;
  • ряд составных элементов находится в закрытом пространстве, поэтому при разрушении отколовшимся частям деваться некуда. Они могут попасть между колодками и барабаном, что приведет к блокировке механизма.

Видео: Тормоза дисковые и барабанные: плюсы и минусы

Положительные качества дисковых тормозов:

  1. Высокая эффективность (на 20% выше, чем у барабанных). И здесь свою роль тоже играет тепловое расширение. Диск от нагрева расширяется, что увеличивает силы трения без дополнительного воздействия на колодки.
  2. Открытая конструкция хорошо вентилируемая, обеспечивает отвод тепла.
  3. Продукты износа удаляются и не попадают на трущиеся поверхности, добавляют эффективность работе механизма.
  4. Попадающая на диск влага тоже удаляется с поверхности.
  5. Колодки прижимаются к диску всей рабочей поверхностью.

Но и без недостатков тоже не обошлось. У дисковых тормозов они такие:

  • диск чувствителен к резким перепадам температуры. Интенсивное торможение с последующим заездом в лужу становится причиной коробления (нарушения геометрии рабочих поверхностей);
  • износ колодок и дисков становится причиной частого проведения технического обслуживания с заменой расходников;
  • сложность использования дисковых механизмов для организации стояночного тормоза;
  • грязь, попадая на рабочие поверхности, обеспечивает интенсивный износ.

Если рассматривать компоновки механизмов на авто, то комбинированная является пока самой оптимальной. Дисковые обладают высокой эффективностью, а барабанные не требуют частого обслуживания. Поэтому такую компоновку используют очень многие производители для автомобилей бюджетной и средней ценовой категории. Но барабанные механизмы постепенно вытесняются дисковыми.

Источник https://lakkroll.ru/u-kakih-avtomobiley-diskovye-tormoza/

Источник https://www.kolesa.ru/article/diametr-ventiljacija-i-kompozity-jevoljucija-diskovyh-tormozov-2016-01-07

Источник https://avtocity365.ru/chto-vybrat-rejtingi-avtotovarov/kakie-tormoza-luchshe-diskovye-ili-barabannye/

Понравилась статья? Поделиться с друзьями: