Микропроцессорная (электронная) система зажигания: назначение, принципы построения и работы
зажигание
зажигание Система зажигания — комплекс устройств автомобиля, отвечающих за формирование и передачу тока к свечам автомобиля для последующего воспламенения подготовленной горючей смеси. Один из вариантов исполнения — микропроцессорная система зажигания, в основе которой лежат электронные узлы. Сегодня есть мнение, что бесконтактное и электронное зажигание — одно и то же устройство. Но это не так. Ниже рассмотрим принципы построения микропроцессорных устройств и тонкости работы.
В чем суть?
Сокращенное название микропроцессорной системы зажигания — МПСЗ. Главное назначение — создание угла опережения силового узла, зависящего от воздушного давления в системе впуска и вращения коленвала. Ученые не один десяток лет шли к созданию чего-то подобного, но последней «каплей», подтолкнувшей к разработке МПСЗ стали следующие моменты:
- сложность регулирования углов опережения путем применения регуляторов-датчиков, работающих на вакуумном и центробежном принципе;
- текучесть (изменение) показателей при эксплуатации автомобиля;
- сильный разброс параметров при поставке на сборки на конвейер.
Главная проблема машины с карбюраторным мотором — отсутствие альтернатив действующей системе зажигания. Но выход был найден — МПСЗ. Электронная система зажигания дала новое дыхание, сделала машину мощнее и приемистее. При правильной установке управление становится комфортабельным и мягким. Кроме этого, монтаж микропроцессорного узла — шанс выжать максимум из мотора без ущерба для ресурса.
Устройство
Электронная система зажигания — главная составляющая управления мотором. Микропроцессорные узлы выступают в роли проводников и организаторов впрыска с последующим воспламенением горючего. Выпускаются также машины, в которых МПСЗ управляет и другими устройствами — охлаждения, впуска и выпуска.
МПСЗ выпускается в нескольких вариациях. Основные производители Бош, Симос, Мотроник и прочими. Принцип действия остается неизменным, а вот конструкция разная. При этом системы МПСЗ условно делятся на две категории:
- прямого зажигания. Здесь подача тока происходит по цепочки катушка зажигания — свеча;
- с распределителем. В данном случае посредник в цепи — механический распределитель, который подает ток высокого напряжения на конкретную свечу.
Микропроцессорное зажигание состоит из группы стандартных узлов — источника напряжения, свечей, выключателя зажигания, группы высоковольтных проводников. Электронный узел включает в себя ряд дополнительных элементов:
- входные датчики — устройства, контролирующие параметры силового узла, улавливающие текущие отклонения и преобразующие сигнал в электрический импульс. МПСЗ работает на базе стандартной группы датчиков, применяемых в системе управления силовым узлом — частоты вращения, детонации, температуры ОЖ и воздуха, положения заслонки дросселя и педали газа, датчика давления кислорода и прочих. Число и название датчиков в каждой конкретной модели автомобиля может меняться;
- ЭБУ силового узла — «приемник», который получает поступающие от упомянутой группы сигналы, производит обработку и направляет в сторону воспламенителя;
- воспламенитель — микропроцессорное устройство, гарантирующее подачу и отключение искры. Основа узла — транзистор. Когда он открыт, то цепь тока проходит через «первичку» катушки зажигания. Если же транзистор в закрытом положении, то ток наводится уже во «вторичке» катушки.
Микропроцессорная система зажигания оборудована:
- одной катушкой, которая общая для узлов;
- сдвоенным или индивидуальным устройством генерации напряжения.
Каждый из вариантов обладает отличительными чертами:
- общая катушка монтируется в устройствах с микропроцессорным зажиганием, оборудованным распределителем;
- индивидуальный тип катушки монтируется на свече, что позволяет отказаться от установки высоковольтных проводников;
- катушки сдвоенного типа монтируются в узлах прямого зажигания. Так, на 4-цилиндровом моторе монтируется пара катушек. Одна устанавливается на пару цилиндров 1 и 4, а вторая — на 2 и 3. В каждом устройство генерируется ток высокого напряжения. Искра образуется одновременном в двух камерах сгорания. В одной воспламеняется подготовленная топливная смесь, а в другой искра работает впустую.
Принцип действия
Интерес вызывает принцип действия МПСЗ. Здесь узел работает с учетом следующих принципов:
- на основании полученных данных ЭБУ рассчитывает требуемые параметры работы;
- подается команда на воспламенитель, передающий сигнал на катушку. При этом в по цепи «первички» начинает течь ток;
- в момент прекращения подачи напряжения происходит индуцирование тока во «вторичке» катушки зажигания. После этого напряжение поступает к свече зажигания с последующим воспламенением смешанного с воздухом горючего.
При движении происходит изменения частоты вращения коленвала. Этот процесс держат под контролем два датчика — положения распредвала и частоты вращения коленвала. Как только в частоте вращения происходят изменения, подается соответствующая команда к ЭБУ, который меняет угол опережения.
Если при движении меняется нагрузка на силовой узел, то контроль угла опережения и фиксация изменений возлагается на ДМРВ — датчик, контролирующий массовый расход воздуха. Кроме этого, вспомогательную информацию по воспламенению и сгоранию горючей смести предоставляет датчик детонации. Остальные контролирующие узлы фиксируют параметры работы силового узла и управляют другими процессами.
Виды комплектации
На рынке и в магазинах реализуется несколько типов электронных систем зажигания. В каждом из вариантов свой датчик давления (особенность — встраивание в микропроцессорный блок). Рассмотрим каждый из вариантов подробнее:
- Система, собранная на базе датчика Холла. Здесь задействован трамблер, в котором отсутствуют грузики и вакуум корректор. Кроме этого, участок ДХ отличается жесткой фиксацией, что устраняет минусы, характерные для привычного трамблера. Для машин моделей ЗАЗ, АЗЛК, ВАЗ и прочих допускается комплектация уже переработанного устройства. При желании лично переделать трамблер и добиться экономии стоит воспользоваться инструкцией и произвести сборку по предоставленному алгоритму.
Устройство с трамблером и парой датчиков коленвала. При таком исполнении траблер берет на себя функцию «разносчика» искры. Такую схему стоит воплотить в жизнь при наличие:
- пары отверстий в КПП;
- штифта в маховике.
В автомобилях отечественного производства, к примеру, в Таврии или ВАЗе, используется маховик без штифта. Выход в этом случае — поставить кронштейн от Ланоса и приварить штифт к шкиву коленвала. В «девятках» и «восьмерках» потребуется монтаж штифта к маховику без демонтажа коробки передач.
Система работы со шкивом. Здесь монтируются следующие узлы:
- один датчик коленвала;
- трамблер для раздачи системы зажигания.
Допускается применение счетверенной катушки зажигания и пары простых коммутаторов. Если применяется счетверенная катушка, то в монтаже трамблера нет необходимости. При переделке Таврии возможен монтаж инжекторного маховика или установка шкива коленвала от Дэу Ланос.
Чтобы проверить наличие штифта, стоит провести следующие манипуляции:
- поставить коленвал в позицию МЗ (ориентация по левой метке на кожухе ГРМ). Далее стоит найти специальный штырь, который установлен возле троса спидометра;
- на «восьмерках» и «девятках» штырь должен совпадать с позицией ВМТ;
- установить новую проводку, при том что родная остается в роли резервной.
Преимущества
Использование электронной системы зажигания — шанс оптимизировать работу мотора под разное топливо. При этом появляются следующие плюсы:
- прирост мощности и тяги (особенно, если речь идет об автомобилях с ГБО);
- отсутствие детонации. Пропадают стуки «пальцев» в период набора скорости (даже если залито дне идеальное горючее);
- бензин сгорает быстрее, что способствует снижению расхода;
- автомобиль проще завести зимой;
- электронная система зажигания находится под контролем, благодаря специальному дисплею;
- появляется шанс для монтажа тумблера, позволяющего переключать систему на разные виды топлива.
Кроме перечисленных преимуществ, стоит выделить и ряд дополнительных опций МПСЗ:
- обороты ХХ поддерживаются за выставленном параметре;
- УОЗ в автоматическом режиме настраивается с датчиком детонации;
- отключение стартера производится автоматически, сразу после пуска мотора;
- появляется опция управления вентилятором охладительной системы;
- параметры вносятся через ноутбук, что упрощает и ускоряет процесс.
Итоги
Микропроцессорная система зажигания — альтернатива другим устройствам с аналогичной функциональностью. Популярность электроники обусловлена в первую очередь простотой настройки, точностью работы и сравнительной надежностью. Главное — правильно реализовать замыслы с помощью квалифицированных мастеров.
Как выставить зажигание на ВАЗ-2107 своими руками? Регулировка зажигания на ВАЗ-2107 — работа, которую можно с легкостью сделать своими руками, сэкономив немалую сумму на посещении СТО. В чем особенности настройки на автомобилях с контактной и бесконтактной системой? Стоит ли обращаться на сервис или же делать работу своими руками?
Как происходит смена сечей зажигания на Peugeot 308? Методология замены свечей на Пежо 308: когда следует производить, какова схема операции.
Основные моменты, разъясняющие, как настроить сигнализацию Starline на запуск в автоматическом режиме Режим автоматического программирования действий агрегата призван улучшить удобство пользования автомобилем. Большая часть современных систем охраны мобильных объектов имеет подобные функции. В статье рассказывается о том, как настроить автозапуск на сигнализации Starline. В доступной форме
10-04-2014, 15:33 0 Основные моменты, разъясняющие, как настроить сигнализацию Starline на запуск в автоматическом режиме
Первый четырехклапанный в серии – Mercedes-Benz M111 На смену технически устаревшему M102 в 1992 году немцы приступили к выпуску совершенно нового бензинового мотора M111. Большое внимание было уделено системам впрыска топлива и зажигания, теперь они имели электронное управление. По сравнению с предшественником двигатель стал более компактным, но
Особенности тюнинга мотора у Приоры Под определением тюнинг следует понимать действие, которое предполагает осуществление определенной настройки или регулирования. Чип-тюнинг является одной из его разновидностей и подразумевает проведение своеобразной доводки силового агрегата автомобиля. Особенности и возможности чип тюнинга
Устройство и сервис двигателя Volkswagen Polo sedan Обрусевший «немец» Volkswagen Polo sedan комплектуется четырехцилиндровым бензиновым мотором 1,6 R4 16v CFNA мощностью 105 л.с. Система питания основана на распределенном впрыске горючего и распредвалах, которые выполнены по схеме DOHC. Ресурсные тесты силового агрегата подтвердили
Комментарии 0
Комментариев к статье «Микропроцессорная (электронная) система зажигания: назначение, принципы построения и работы» пока нет.
Подписывайся на нас:
© MashinaPro.ru, 2020 — Материалы сайта являются интеллектуальной собственностью сайта. Копирование материала запрещено.
Hyper-Press — Создание и продвижение сайтов
Последний вздох: как и зачем устанавливали электронное управление на карбюраторы
Засоряющиеся жиклеры, плавающие холостые обороты, бесконечные провалы при разгоне… То ли дело инжектор! Но машину с инжекторным мотором позволить себе в конце прошлого века могли не все. Впрочем, вдохнуть новую жизнь в старенький мотор позволяла микропроцессорная система зажигания – забытый, недооцененный, но интересный и важный этап развития моторостроения.
Почему инжектор сменил карбюратор?
М ногие считают, что в эволюции систем питания автомобильных бензиновых моторов карбюраторы последовательно сменил моновпрыск, затем впрыск распределенный, а потом и непосредственный. Однако не все знают, что был короткий период развития карбюраторных двигателей, когда у них получилось почти вплотную подобраться по характеристикам к инжекторным! Произошло это благодаря МПСЗ – микропроцессорным системам зажигания.
Несовершенство классической системы питания и зажигания не было секретом для автоинженеров со времен появления первых автомобилей. Карбюраторный принцип смесеобразования и центробежно-вакуумный принцип поддержания оптимального угла зажигания всегда считались компромиссом – у двигателя слишком много переходных режимов, в которых карбюратор и трамблер не способны обеспечить оптимальную работу мотора, сочетающую максимальную экономичность, приемистость, эластичность, мощность и полное отсутствие детонации. А вот ЭБУ, электронный вычислительный блок, управляющий топливными форсунками и свечами инжекторной системы — может.
Однако все допотопные механические и электромеханические впрысковые системы, существовавшие до эпохи появления полноценных электронно-управляемых распределенных инжекторов (от «командогеретов» авиационных двигателей люфтваффе до многочисленных поколений автомобильных «джетроников»), по сути, слабо отличались в лучшую сторону от качественных карбюраторов. И до практической реализации инжектора в его самом массовом современном виде дошло лишь тогда, когда сделать это позволил уровень развития электроники. Создать полноценный блок ЭБУ для инжектора на радиолампах в 50-е годы ХХ века было попросту нереально. Сделать его на транзисторах 60-х годов – тоже. Лишь в 80-е годы, благодаря распространению компактных микросхем и мощных транзисторов, ЭБУ приобрел знакомые нам сегодня функционал, габариты и облик.
Карбюратор уходит, но не сдается
Когда-то первые карбюраторы представляли собой примитивную трубку с одним жиклером и дроссельной заслонкой. Однако за десятилетия эволюции их конструкция усложнилась неимоверно. Идеальными устройствами для приготовления топливовоздушной смеси они так и не стали, но заметно к ним приблизились. Поэтому, несмотря на то, что переход на распределенный электронно-управляемый впрыск был предрешен и очевиден даже инженерам советских автозаводов, мысль о том, что миллионы карбюраторных машин еще не исчерпали свой потенциал, не давала покоя многим.
Дело в том, что современный карбюратор не зря имеет сложную конструкцию: благодаря этому он, будучи исправным и идеально отрегулированным, достаточно неплохо справляется с задачей подготовки правильной бензовоздушной смеси в различных режимах работы двигателя и с учетом самых разных внешних условий. А значит, карбюратор можно попытаться оставить в покое и переключить внимание на второе из двух важнейших для работы мотора условий – правильное зажигание. Трамблер с его убогими вакуумным и центробежным регуляторами угла опережения – узкое место в моторе, он во многом губит все то, что дает карбюратор. Поэтому можно попытаться дополнить карбюратор умной электронной системой зажигания, и он приблизится по эффективности к инжектору. Так и родились микропроцессорные системы зажигания.
Для понимания идеологии этих систем нужно отметить один важный момент. Многие помнят, как едва ли не каждый советский владелец вазовской классики, Москвича или Волги стремился заменить нестабильное и примитивное штатное контактное зажигание на бесконтактное электронное. В последнем контактную группу из трамблера выбрасывали и заменяли датчиком Холла, индуктивным датчиком или даже инфракрасным. Так вот, электронные системы бесконтактного зажигания и МПСЗ – это совершенно разные вещи.
Электронное бесконтактное зажигание позволяло лишь избавиться от контактной пары и уменьшить зависимости мощности искры от просадки напряжения бортсети стартером. Ну и иногда брало на себя функцию ручного октан-корректора. А МПСЗ делала не только всё то же самое, но и — что гораздо важнее — автоматически регулировала параметры опережения зажигания, исходя из положения коленвала, оборотов и давления на впуске. С развитием микропроцессорных систем стало возможным при желании добавить датчик детонации, лямбда-зонд, датчики температуры антифриза и воздуха на впуске. Причем эта регулировка шла непрерывно, практически как у инжектора. Контроллер быстро реагировал на изменение условий работы мотора и корректировал угол опережения зажигания, учитывая в том числе и качество топлива.
Все владельцы карбюраторных автомобилей с установленным микропроцессорным зажиганием, начиная от достаточно старых и примитивных моделей МПСЗ и кончая современными, с возможностью самостоятельной ручной коррекции графиков УОЗ через Bluetooth со смартфона (!), отмечали радикальные изменения в поведении машины. «Карбовый» двигатель действительно «просыпался», идеально ровно работая на холостых оборотах и становясь приемистым и очень эластичным в движении. Также МПСЗ делала минимальной разницу между бензином и газом, если на машине было установлено газобаллонное оборудование.
Сфера автоэнтузиастов
Первые отечественные инжекторы появились на ВАЗах в середине 90-х, но массовыми стали лишь к началу 2000-х. Автомобильные заводы СССР, а затем и России слишком долго зависали на «карбюраторном этапе». Последние карбюраторные машины сходили с конвейеров ВАЗа и УАЗа аж в 2006 году, до ввода в нашей стране экологического стандарта Евро-2, в который «карб» уже не вписывался. Массовый и безвозвратный переход на инжекторные системы задержался сильно, и поэтому промежуточный этап с применением МПСЗ для автозаводов оказался неприемлемым.
Под капотом Lada 111 ‘1997–2009
Тем не менее, советская промышленность в конце 80-х производила фабричные комплекты контроллеров МПСЗ с периферией и проводкой. Модели носили характерные для своего времени названия типа «Электроника-МС2713-02» или «Электроника-МС4004». Выпускали их у нас в Москве и «почти у нас», в болгарской Софии. Такие контроллеры МПСЗ заводского производства комплектовались полным набором компонентов для самостоятельного монтажа системы на автомобиль, включая распределенные катушки зажигания (в роли которых часто выступали спаренные катушки от Оки) и даже заглушку, устанавливаемую на место удаляемого трамблера.
Главным из датчиков был, разумеется, датчик положения коленвала, который нужно было установить в КПП напротив зубьев маховика. Вторым по важности являлся датчик разрежения во впускном коллекторе, служивший основным источником информации о нагрузке на двигатель для умной электроники. У систем МПСЗ «Электроника» этот датчик был встроенным непосредственно в сам корпус контроллера и соединялся со штуцером в карбюраторе тонким шлангом.
Однако несмотря на высокий уровень гаджетов под маркой «Электроника», массовой система так и не стала. В 80-х Волжский автозавод выпускал незначительное число переднеприводных автомобилей с МПСЗ «Электроника» на экспорт; в широкой же продаже в качестве комплектов для самостоятельной установки встречались они крайне редко, и мало кто о них знал. А с развалом СССР в 1991 году фабричные МПСЗ и вовсе исчезли с прилавков магазинов.
Лет десять в сфере микропроцессорного зажигания было полное затишье, но примерно в начале 2000-х эту нишу заняли мелкосерийные самодельщики-любители, энтузиасты тюнинга, которые полностью «окучивают» ее и по сей день, создавая достаточно сложные и весьма умные устройства. Правда, количество таких проектов было относительно невелико и сейчас постепенно сокращается, ибо в наши дни спрос на МПСЗ планомерно падает по причине ухода на заслуженный отдых карбюраторных моторов и машин с ними…
Инжектор как донор для карбюратора
Кстати, стоит упомянуть любопытное ответвление развития систем МПСЗ, которое они получили уже в инжекторную эпоху. Многие энтузиасты карбюраторных машин в середине 2000-х почти одновременно пришли к лежащей на поверхности идее. Поскольку блоки управления инжекторными двигателями типа «Январей», «Микасов» и прочих «Бошей» подешевели, их стало возможно приобрести за совершенно небольшие деньги на разборках. А ведь инжекторный ЭБУ – это практически готовый и весьма совершенный блок для карбюраторной МПСЗ.
Дело в том, что инжекторный ЭБУ, собственно, не знает, где он работает. На своем родном инжекторном моторе, на карбюраторном моторе или вообще на лабораторном столе или на коленке. Блок просто методично выполняет свою программу – получает информацию от датчиков и на основе этих данных выдает управляющие сигналы для впрыска и зажигания. И если подключить к ЭБУ вместо топливных форсунок карбюратор, навесить на него модуль зажигания и датчики, то электронный блок будет работать и безупречно подавать искру в нужный момент с точностью, недоступной даже самому лучшему трамблеру, контролируя обороты, нагрузку на мотор, температуру и детонацию. Для этого, правда, нужно откорректировать прошивку, написав ее урезанный «карбюраторный» вариант. Но для настоящих энтузиастов это не так уж сложно.
Получая информацию от датчика положения коленвала, давления на впуске, детонации и иногда даже от лямбда-зондов (если владельцу карбюраторной машины было не лень врезать их в глушитель), популярные и распространенные ЭБУ типа «Январь» дали многим автостаричкам второе дыхание.
Впрочем, повторимся — сегодня история с МПСЗ постепенно сходит на нет. Микропроцессорное зажигание было бы чертовски актуально в виде заводской системы на автомобилях “доинжекторной” эпохи, но отечественным автозаводам эта промежуточная инновация оказалась не по силам. Сейчас же карбюраторных машин становится все меньше, а многие из тех, кто готов своими руками сделать что-то основательное с любимой, но немолодой машинкой, предпочитают собрать полный инжекторный комплект впрыска и зажигания, который с применением подержанных компонентов с разборки порой оказывается сопоставимым по цене с комплектом МПСЗ для карбюратора…
Виды, устройство и принцип работы системы зажигания
Система зажигания двигателя – это комплекс устройств, приборов и датчиков, необходимых для его запуска. Ее главной задачей является создание высокого напряжения для формирование искры, воспламеняющей топливовоздушную смесь, в точно определенный момент времени. Это обеспечивает правильный режим работы мотора, а потому от исправности системы зажигания зависит расход топлива, мощность и безопасность движения автомобиля.
Устройство и принцип действия типовой системы зажигания
С технической стороны система зажигания входит в комплекс электрооборудования двигателя. Конструктивно она состоит из следующих элементов:
- Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
- Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
- Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
- Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
- Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
- Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
- Свечи зажигания.
Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.
Виды систем зажигания
В современном автомобилестроении системы зажигания классифицируют в зависимости от способа управления процессом. При этом выделяют три основных типа схем:
- контактная (контактно-транзисторная);
- бесконтактная (транзисторная);
- электронная (микропроцессорная).
Характерные особенности контактной системы
Исторически контактная система является одной из первых и сегодня ее можно встретить лишь на старых моделях автомобилей. В таких конструкциях формирование высокого напряжения происходит в трансформаторной катушке, а распределение его на свечи реализуется механическим способом – замыканием и размыканием контактов цепи прерывателем-распределителем.
Помимо основных элементов, такие системы включают в себя центробежный регулятор опережения зажигания, необходимый для преобразования угла опережения зажигания относительно частоты вращения коленвала. Он представляет собой два груза, воздействующих на мобильную пластину, контактирующую с кулачковым механизмом прерывателя.
Угол опережения зажигания – определенное положение коленвала, при котором осуществляется подача высокого напряжения на свечи. В таком режиме зажигание происходит до момента достижения поршнем верхней мертвой точки, что позволяет обеспечить максимально эффективное сгорание топливовоздушной смеси.
Также в контактных схемах применяется вакуумный регулятор опережения зажигания, изменяющий угол опережения соответственно режиму работы (нагрузке) мотора. Он соединен с полостью, находящейся за дроссельной заслонкой, и при нажатии на педаль газа изменяет угол опережения в зависимости от величины разрежения.
При замыкании контактов низкое напряжение подается на первичную обмотку катушки, где аккумулируется энергия и в момент размыкания контакта происходит формирование высокого напряжения на вторичной обмотке. Затем энергия поступает к распределителю зажигания и далее на соответствующую свечу.
Если нагрузка на силовой агрегат повышается, увеличивается частота вращения вала прерывателя-распределителя, и грузы центробежного регулятора расходятся, изменяя положение пластины. Это способствует более раннему размыканию контактов, что увеличивает угол опережения. При снижении нагрузки на двигатель происходит обратный процесс.
В чем отличия контактно-транзисторной системы зажигания
Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.
За счет установки транзистора напряжение, поступающее на свечи, больше, чем в классической контактной системе на 30%. Зазор между электродами и, как следствие, длина искры при этом также больше, а значит возрастает и площадь контакта с топливовоздушной смесью, что способствует ее полному сгоранию. В контактно-транзисторной системе зажигания прерыватель воздействует не на катушку, а на коммутатор.
При повороте ключа через транзистор начинают проходить два типа токов:
- управления;
- основной ток первичной обмотки.
Когда контакты размыкаются, ток цепи управления исчезает, а транзистор запирается, препятствуя протеканию тока первичной обмотки. В этот момент магнитное поле формирует высокое напряжение на вторичной обмотке. Для ускорения запирания транзистора в контактной системе зажигания этого типа может устанавливаться импульсный трансформатор.
Принцип работы бесконтактной системы
Эволюционным продолжением транзисторно-контактной системы, является бесконтактное зажигание. В таких конструкциях вместо прерывателя устанавливается специальный датчик импульсов. Это дает возможность увеличить срок службы системы зажигания за счет отсутствия неисправностей, связанных с контактами прерывателя.
Датчик формирует электрические импульсы низкого напряжения. Он бывает трех типов:
- Датчик Холла. Конструкция такого датчика включает в себя постоянный магнит, и пластину-полупроводник, оснащенную микросхемой.
- Индуктивный. Принцип его работы основан на изменении величины индукции чувствительного элемента в зависимости от величины зазора между датчиком и движущимся пластинчатым ротором, воздействующим на магнитное поле.
- Оптический. Он состоит из светодиода, фототранзистора и микросхемы согласования. При попадании света от диода на фототранзистор датчик подает массу (минус питания) на коммутатор. Перекрытие потока света провоцирует исчезновение тока в катушке и способствует дальнейшему формированию искры.
Конструктивно датчик импульсов интегрирован в распределитель и регулируется режимом вращения коленвала двигателя. Прерывание тока в первичной обмотке катушки зажигания бесконтактной системы осуществляется также транзисторным коммутатором, но реагирующим на сигналы датчика.
В момент вращения коленвала датчик посылает импульсы напряжения на коммутатор. Последний, соответственно, формирует импульсы тока в обмотке низкого напряжения катушки. Когда ток не поступает, на вторичной обмотке возникает высокое напряжение, которое передается распределителю и далее по высоковольтным проводам к нужной свече. Изменение угла опережения в бесконтактной системе зажигания также выполняется центробежным и вакуумным регуляторами.
Электронная и микропроцессорная системы
Самой современной системой считается электронная. Она не имеет механических контактов, а потому ее также можно назвать бесконтактной. Электронное зажигание является частью системы управления двигателем.
Выделяют два типа электронных бесконтактных систем зажигания:
- С распределителем. В подобной схеме применяется механический распределитель зажигания, подающий высокое напряжение на заданную свечу.
- Прямого зажигания. При такой схеме высокое напряжение поступает к электродам свечи напрямую с катушки.
Помимо базовых элементов электронная система зажигания включает:
- Входные датчики. Они регистрируют данные о текущем режиме работы мотора и подают их в виде электронных сигналов блоку управления.
- Электронный блок управления. Он выполняет обработку сигналов и передает соответствующие команды на воспламенитель.
- Исполнительное устройство, или воспламенитель. Фактически является транзисторной платой, обеспечивающей в открытом режиме поступление напряжения на первичную обмотку, а в закрытом – отсечку и формирование высокого напряжения на вторичной обмотке катушки.
Такие системы могут оснащаться одной общей (в конструкциях с распределителем), индивидуальными (при подаче энергии прямо на свечу) или сдвоенными катушками зажигания.
Разновидностью электронной системы является микропроцессорная. В ней применяется целый комплекс датчиков, сигналы которых обрабатываются ЭБУ. Он рассчитывает оптимальный режим работы системы в заданный момент времени. Преимуществами такой конструкции является снижение расхода топлива и улучшение динамических характеристик автомобиля.
Источник https://mashinapro.ru/1488-zajiganie-electronnoe.html
Источник https://www.kolesa.ru/article/poslednij-vzdoh-kak-i-zachem-ustanavlivali-elektronnoe-upravlenie-na-karbyuratory
Источник https://techautoport.ru/dvigatel/sistema-zazhiganiya/sistema-zazhiganiya-dvigatelya.html